首页 | 本学科首页   官方微博 | 高级检索  
     


Self-organizing map clustering based on continuous multiresolution entropy
Affiliation:1. Laboratorio de Investigaciones Sensoriales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Neurociencias Aplicadas, Hospital de Clínicas, Buenos Aires, Argentina;2. Laboratorio de Cibernética, Fac. Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos, Argentina;3. Laboratorio de Señales y Dinámicas no Lineales, Fac. Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos, Argentina
Abstract:The detection of changes in the parameter values of a nonlinear dynamic system is a branch of study with multiple applications. In this paper, we explore a variant of an automatic detector and clustering of slight parameter variations in nonlinear dynamic systems proposed by Torres et al. [Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools, Int. J. Bifurc. Chaos 11(4) (2001) 967–981]. The new method takes the advantages of the continuous multiresolution entropy to localize slight changes in the parameters, and uses self-organizing maps to quantify and cluster these changes. We discuss the performance of this method while applied to automatic segmentation of natural and synthetic diphthongs in the presence of additive noise. Our results show the potentiality of the proposed method.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号