首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal diffusion in micropores by molecular dynamics computer simulations
Affiliation:1. LFC (UMR-5150), Université de Pau et des Pays de l’Adour, Centre Universitaire de recherche scientifique, BP 1155, F-64013 Pau Cedex, France;2. Laboratoire TREFLE (UMR-8508), site ENSCPB, Université Bordeaux I, 16 Avenue Pey-Berland, F-33607 Pessac Cedex, France;3. LPMCN (UMR-5586), Université Claude Bernard Lyon I, 6 rue Ampère, F-69622 Villeurbanne Cedex, France;4. LPCM (UMR-5803), Université Bordeaux I, 351, Cours de la Libération, F-33405 Talence Cedex, France;5. TOTAL, CSTJF, Avenue Laribbau, F-64018 Pau, France;1. Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China;2. Department of Foundation Courses, Agricultural University of Hebei, Huanghua 061100, PR China;1. UPMC-Paris 6, France;2. UnB, Brasília, Brazil;1. School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People''s Republic of China;2. Department of Physics and Electrical Engineering, Hanshan Normal University, Chaozhou 521041, People''s Republic of China
Abstract:This work focuses on the identification of the main microscopic processes that influence thermal diffusion (the Soret effect) in a fluid mixture confined in an uncorrugated slit pore. To achieve this purpose, a boundary driven nonequilibrium molecular dynamics scheme is applied on binary mixtures of super-critical Lennard–Jones (LJ) spheres representing methane and n-decane. Following previous work, we perform a systematic study of the influence of the parameters used to describe a model slit pore on an effective thermal diffusion factor. Among these parameters are: The nature of the reflection of the diffusing particles on the walls (specular or diffusive), the pore width with respect to the particle size and the fluid-wall potential strength. Simulations were run both on equimolar and non-equimolar mixtures. The results indicate that thermal diffusion is effectively lowered only for strong fluid–wall interactions. It is shown that the general trends, which are different under sub- and super-critical conditions, can be explained by a careful analysis of the relative sorption energies of the two compounds.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号