首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere
Affiliation:1. Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan;2. OK Lab. Co., Ltd. 8-7-3 Shimorenjyaku, Mitaka, Tokyo 181-0013, Japan;3. Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan;1. State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua-BP Clean Energy Center, Tsinghua University, Beijing 100084, China;2. China Guodian Science and Technology Research Institute, Nanjing 100034, China;3. Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, United States;1. School of Computer Science, University of Massachusetts Amherst, 140 Governor''s Drive, Amherst, MA 01003, United States.;2. Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, United States;3. Los Alamos National Laboratory, P.O. Box 1663, MS J565, Los Alamos, NM 87545, United States
Abstract:Laser-Induced Breakdown Spectroscopy was selected by NASA as part of the ChemCam instrument package for the Mars Science Laboratory rover to be launched in 2009. ChemCam's Laser-Induced Breakdown Spectroscopy instrument will ablate surface coatings from materials and measure the elemental composition of underlying rocks and soils at distances from 1 up to 10 m. The purpose of our studies is to develop an analytical methodology enabling identification and quantitative analysis of these geological materials in the context of the ChemCam's Laser-Induced Breakdown Spectroscopy instrument performance. The study presented here focuses on several terrestrial rock samples which were analyzed by Laser-Induced Breakdown Spectroscopy at an intermediate stand-off distance (3 m) and in an atmosphere similar to the Martian one (9 mbar CO2). The experimental results highlight the matrix effects and the measurement inaccuracies due to the noise accumulated when low signals are collected with a detector system such as an Echelle spectrometer equipped with an Intensified Charge-Coupled Device camera. Three different methods are evaluated to correct the matrix effects and to obtain quantitative results: by using an external reference sample and normalizing to the sum of all elemental concentrations, by using the internal standardization by oxygen, a major element common to all studied matrices, and by applying the Calibration Free Laser-Induced Breakdown Spectroscopy method. The three tested methods clearly demonstrate that the matrix effects can be corrected merely by taking into account the difference in the amount of vaporized atoms between the rocks, no significant variation in plasma excitation temperatures being observed. The encouraging results obtained by the three methods indicate the possibility of meeting ChemCam project objectives for stand-off quantitative analysis on Mars.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号