首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anisotropy of hexagonal ferrites with M,W and Y structures containing Fe3+ and Fe2+ as magnetic ions
Authors:FK Lotgering  PR Locher  RP van Stapele
Institution:Philips Research Laboratories, Eindhoven, The Netherlands
Abstract:The ferrimagnetic saturation moment and hexagonal anisotropy constant K1 have been measured at 4K on a Zn2Y single crystal and on polycrystalline BaFe2+2W and SrFe2+2W samples. The moment of Fe2W is in agreement with a collinear spin coupling and with the known site occupation for the Fe2+ ions. The moment of Zn2Y is 9% lower than the value for a collinear configuration.The uniaxial anisotropy of Fe2+ in hexagonal ferrites is discussed and compared with that of Co2+. No noticeable Fe2+ anisotropy is found in Fe2W in contrast to LaM = LaFe2+Fe3+11O19, in which the Fe2+ anisotropy is strong. The difference is attributed to the symmetry difference of the sites occupied by the Fe2+ ions in both compounds. The current theory does not satisfactorily explain the anisotropy and quadrupole splitting of Fe2+ in LaM. From this it is concluded that admixing of 5E states and (or) the influence of a dynamical Jahn-Teller effect cannot be neglected.The dipole-dipole anisotropy is computed for the M, W and Y structure and some deviation from the literature data is found. Using these results, a mean anisotropy of 1.3 to 2.3 cm?1 per Fe3+ ion is found for the three structures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号