首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C−H Activation by Soybean Lipoxygenase‐1
Authors:Shenshen Hu,J  r  me Cattin‐Ortol  ,Jeffrey W. Munos,Judith P. Klinman
Abstract:The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase‐1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen‐tunneling properties of the wild‐type protein and three single‐site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C−H activation. In contrast, the primary kinetic isotope effects (KIEs) for C−H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope‐dependent donor–acceptor distance‐sampling modes, and a more global, isotope‐independent search for productive protein conformational sub‐states.
Keywords:Biokatalyse  Enzyme  Hydrostatischer Druck  Proteine  Proteinkonformationen
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号