首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorinated Azobenzenes for Shape‐Persistent Liquid Crystal Polymer Networks
Authors:Supitchaya Iamsaard,Emmanuel Anger,Sarah Jane Aß  hoff,Alexis Depauw,Stephen P. Fletcher,Nathalie Katsonis
Abstract:Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross‐linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long‐lived photomechanical deformation in liquid‐crystal polymer networks.
Keywords:Flü  ssigkristalle  Intelligente Materialien  Molekulare Schalter  Photochromie  Weiche Aktuatoren
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号