首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NH3 adsorption on Ni(110) and the production of the NH2 species by electron irradiation
Authors:Craig Klauber  Mark D Alvey  John T Yates
Institution:Surface Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Abstract:The adsorption of NH3 on Ni(110) has been examined using electron stimulated desorption ion angular distribution (ESDIAD), low energy electron diffraction (LEED) and thermal desorption spectrometry (TDS). At ~ 85 K the NH3 molecule enters into a series of chemisorption and physisorption states whose structures have been partially characterized by means of ESDIAD and LEED. Upon heating, these NH3 states desorb without dissociation; for adsorption below 300 K there is essentially no thermal decomposition. The ammonia adiayer was found to be extremely sensitive to electron irradiation effects. Evidence was found to support the irradiation induced conversion of NH3(ads) to an amido intermediate, nh2(ads). The NH2 adsorbs with its C2v axis normal to the surface and its NH bonds aligned along the 001] and 001?] directions. In the absence of further electron irradiation the nh2(ads) species is stable to 375 K whereupon it dissociates to N(ads)and H2(g). The remaining N(ads) desorbs near 750 K with significant attractive N…N interaction. No evidence is found for an imido intermediate, nh(ads). nh2(ads) also undergoes a disproportionation/recombination reaction upon heating to produce an additional NH3 desorption state. A significant isotope effect for NH versus ND scission, sensitive to the adsorption state of the ammonia, is found to occur upon electron irradiation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号