首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-step microfluidic device for studying cancer metastasis
Authors:Chaw K C  Manimaran M  Tay E H  Swaminathan S
Institution:Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore.
Abstract:This paper describes a multi-step microfluidic device for studying the deformation and extravasation of primary tumor cells. Prior to extravasation, primary tumor cells undergo sequential steps of deformation through the capillaries, before adhering and transmigrating through the endothelial lining and basement membrane. To study this cascade of events, we fabricated a multi-step microfluidic device whose microgaps were coated with Matrigel to mimic the basement membrane. The microchannel was lined with human microvascular endothelial cells (HMECs) to replicate the endothelial lining. Analysis of deformation, biological and migratory capabilities of various tumor cell lines viz. HepG2, HeLa, and MDA-MB 435S were quantified using the fabricated device. After deformation, the cells' viabilities were significantly reduced and their doubling times were simultaneously increased, indicating changes in their biological capability. However, cell deformation did not significantly reduce their cell motility. Cell motility was co-assessed using the cell's migration rate and the overall population's percentage migration under various conditions (no barrier, Matrigel and Matrigel-HMEC). The device was also used to quantify the effects of Matrigel and the endothelial lining on cell migration. Our results suggest that both played an independent role in inhibiting cell extravasation, with the Matrigel significantly slowing down cell movement and the endothelial lining reducing the total number of transmigrated cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号