首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of hybrid materials based on 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and Dawson-type tungstophosphate K7[H4PW18O62]·18H2O and K6[P2W18O62]·13H2O
Authors:Malika Ammam  Jan Fransaer
Affiliation:Department of Metallurgy and Materials Engineering (MTM), K.U Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee, Belgium
Abstract:In this study, we synthesized hybrid materials using well-Dawson polyoxometalates (POMs), K7[H4PW18O62]·18H2O or K6[P2W18O62]·13H2O and a room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). K, W, P and CHN elemental analysis showed that one mole of [H4PW18O62]7− reacts with 6 moles of BMIM+ and one mole of [P2W18O62]6− reacts with 4 moles of BMIM+ to form, respectively, K[BMIM]6H4PW18O62 and K2[BMIM]4P2W18O62. X-ray diffraction illustrated amorphous structure of the hybrid materials. FT-IR spectra showed the presence of both 1-butyl-3-methylimidazolium cation and the Dawson anion. TG analysis displayed a relative thermal stability of the hybrid materials compared to the parents Dawson POMs. Cyclic voltammetry showed that the reduction peak potentials of the Dawson anion in the hybrid materials shift towards negative values and the shift is more pronounced for K[BMIM]6H4PW18O62 compared to K2[BMIM]4P2W18O62. This was attributed to a decrease in the acidity of the Dawson POM anion in the hybrid material.
Keywords:Well-Dawson polyoxometalates   Room temperature ionic liquid   Hybrid material ionic liquid-polyoxometalates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号