首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design
Authors:Pratik P Dholabhai  Shahriar Anwar
Institution:a School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA
b Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, PO Box 6203, Gaithersburg, MD 20899, USA
Abstract:Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a “traffic jam” that decreases conductivity, which is consistent with the experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials.
Keywords:Pr-doped ceria  Kinetic lattice Monte Carlo  Oxygen vacancy diffusion  Ionic conductivity  DFT+U
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号