首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improvements of the smearing technique for cross-stiffened thin rectangular plates
Authors:Yu Luan  Mogens Ohlrich
Institution:a Acoustic Department, Bang & Olufsen, Peter Bangs Vej 15, DK-7600 Struer, Denmark
b Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Building 352, DK-2800 Kongens Lyngby, Denmark
Abstract:New developments in the simplified smearing technique for modeling vibrations of cross-stiffened, thin rectangular plates are presented. The computationally efficient smearing technique has been known for many years, but so far the accuracy of, say, predicted natural frequencies has been inadequate. The reason is that only the stiffeners at a right angle to the axis of angular motion are taken into account when calculating the bending stiffness, whereas the stiffeners that are parallel to this axis of angular motion are neglected. To improve predictions, the parallel stiffeners are taken into account in this paper. The improved smearing technique results in better accuracy for predicted natural frequencies of flat stiffened plates, as demonstrated for both simply supported and clamped boundary conditions. The improved prediction accuracy is demonstrated by comparing results from a numerical model based on the current development with results from finite element (FE) simulations that include the exact cross-sectional geometries of the stiffened panel. In order to demonstrate applications of the improved smearing technique, the predicted forced response is compared with both experimental and FE results. Another improvement concerns the orientation of the stiffeners. The original smearing technique presupposes that the stiffeners are parallel to the edges of the plate, but simple considerations make it possible to relax this requirement. To test the validity of the resulting technique a series of plates are examined for stiffeners angled relative to the plate edges.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号