首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method
Authors:Lei Bi  Ping Yang  George W Kattawar  Bryan A Baum
Institution:a Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
b Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA
c Climate Science Branch, NASA Langley Research Center, Hampton, VA 23681, USA
d Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA
Abstract:A new physical-geometric optics hybrid (PGOH) method is developed to compute the scattering and absorption properties of ice particles. This method is suitable for studying the optical properties of ice particles with arbitrary orientations, complex refractive indices (i.e., particles with significant absorption), and size parameters (proportional to the ratio of particle size to incident wavelength) larger than ∼20, and includes consideration of the edge effects necessary for accurate determination of the extinction and absorption efficiencies. Light beams with polygon-shaped cross sections propagate within a particle and are traced by using a beam-splitting technique. The electric field associated with a beam is calculated using a beam-tracing process in which the amplitude and phase variations over the wavefront of the localized wave associated with the beam are considered analytically. The geometric-optics near field for each ray is obtained, and the single-scattering properties of particles are calculated from electromagnetic integral equations. The present method does not assume additional physical simplifications and approximations, except for geometric optics principles, and may be regarded as a “benchmark” within the framework of the geometric optics approach. The computational time is on the order of seconds for a single-orientation simulation and is essentially independent of the size parameter. The single-scattering properties of oriented hexagonal ice particles (ice plates and hexagons) are presented. The numerical results are compared with those computed from the discrete-dipole-approximation (DDA) method.
Keywords:Light scattering  Geometric optics  Physical optics  Hexagonal ice crystal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号