首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of water or salt solution on thin hydrophobic films
Authors:Castro L B R  Almeida A T  Petri D F S
Affiliation:Instituto de Química, Universidade de S?o Paulo, P.O. Box 26077, S?o Paulo, SP 05513-970, Brazil.
Abstract:Hydrophobic films of polystyrene synthesized in bulk (PS) and by emulsion polymerization in the presence of the cationic surfactant cetyltrimethylammonium bromide (PS-CTAB) or the anionic surfactant sodium dodecyl sulfate (PS-SDS) were characterized by means of ellipsometry, contact angle measurements, and atomic force microscopy. Thin (approximately 65 nm) and thick (approximately 300 nm) films were spin-coated on hydrophilic silicon wafers. PS films presented scarcely tiny holes, while PS-CTAB and PS-SDS films presented holes and protuberances. The former were attributed to dewetting effects and the latter to surfactant clusters. The films were exposed to water or to a 0.1 mol/L NaCl solution for 24 h. Ex situ measurements evidenced strong topographic alterations after the exposure to the fluid. A model based on the diffusion of water (or electrolyte) molecules to the polymer/silcon dioxide interface through holes or defects on the film edges was proposed to explain the appearance of wrinkles and protuberances. In situ ellipsometric measurements were performed and compared with simulations, which considered either a water layer between a polymer and a silcon dioxide layer or an air layer between a polymer and water (medium). In the case of thin PS films, the ellipsometric angles evidenced a very thin (0.5-1.0 nm) air layer between water and the PS films. Upon increasing the PS film thickness, no air layer could be observed by ellipsometry. Regardless of the thickness, the ellipsometric data obtained for PS-CTAB and PS-SDS films did not indicate the presence of an air layer between them and the aqueous media. The dramatic changes in the topography of PS, PS-CTAB, and PS-SDS after immersion in salt solution were explained with proposed models. From a practical point of view, this study is particularly relevant because many hydrophobic polymers are used as substrates for biomedical purposes, where the physiological ionic strength is 0.15 mol/L NaCl.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号