首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of film coating process in a novel rotating fluidized bed
Authors:Nakamura Hideya  Iwasaki Tomohiro  Watano Satoru
Institution:Department of Chemical Engineering, Osaka Prefecture University.
Abstract:In this study, numerical simulation of film coating process in a novel rotating fluidized bed (RFB) was conducted by using a Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) coupling model. Particle movements and fluid motions in a centrifugal force field were simulated at three-dimensional cylindrical coordinate, and this model was applied to film coating process. Film coating process in a RFB was numerically analyzed by using a simplified assumption that a particle was coated only when a particle existed within a spray zone. The experiments were also conducted and uniformity of sprayed material was evaluated by investigating color difference of the coated particles. As a result of the numerical simulation, three-dimensional bubble movements and particle circulation could be well simulated. In addition, mass of the sprayed material on a single particle in a RFB could be visualized by using our proposed model. The relationship between distribution of the sprayed material and the coating time was also analyzed. Calculated mass distributions of the sprayed material could be expressed by a normal distribution function, showing qualitative good agreement with the previous studies. Effect of the operating parameters, such as gas velocity and centrifugal acceleration, on the uniformity of the sprayed material was also investigated by both numerical and experimental approaches. Comparison of the coating process in a RFB with that in a conventional fluidized bed was also conducted by the numerical simulation. The result showed that uniformity of the sprayed material was greatly improved in a RFB due to the much smaller circulation time.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号