Photoionization of helium nanodroplets doped with rare gas atoms |
| |
Authors: | Kim Jeong Hyun Peterka Darcy S Wang Chia C Neumark Daniel M |
| |
Affiliation: | Department of Chemistry, University of California, Berkeley, California 94720, USA. |
| |
Abstract: | Photoionization of He droplets doped with rare gas atoms (Rg=Ne, Ar, Kr, and Xe) was studied by time-of-flight mass spectrometry, utilizing synchrotron radiation from the Advanced Light Source from 10 to 30 eV. High resolution mass spectra were obtained at selected photon energies, and photoion yield curves were measured for several ion masses (or ranges of ion masses) over a wide range of photon energies. Only indirect ionization of the dopant rare gas atoms was observed, either by excitation or charge transfer from the surrounding He atoms. Significant dopant ionization from excitation transfer was seen at 21.6 eV, the maximum of He 2p 1P absorption band for He droplets, and from charge transfer above 23 eV, the threshold for ionization of pure He droplets. No Ne+ or Ar+ signal from droplet photoionization was observed, but peaks from HenNe+ and HenAr+ were seen that clearly originated from droplets. For droplets doped with Rg=Kr or Xe, both Rg+ and HenRg+ ions were observed. For all rare gases, Rg2+ and HenRgm+ (n,m> or =1) were produced by droplet photoionization. Mechanisms of dopant ionization and subsequent dynamics are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|