首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular Dynamics Simulation of the Fracture in Polymer‐Exfoliated Layered Silicate Nanocomposites
Authors:Mo Song  Lei Chen
Abstract:Summary: The MD technique was used to investigate the fracture behavior in fully exfoliated layered silicate (nanoplatelet)‐polymer nanocomposites. MD results reveal that the addition of the nanoplatelets can improve the fracture strength of polymers. The interactions between the surface of the nanoplatelets and the segments of the polymer, and the relaxation time of polymer chains have significant influences on the fracture strength of the polymer. For polymers with Tg below room temperature, such as polyurethane, or close to room temperature, such as nylon, the nanoplatelets are always working for the enhancement of the mechanical properties. However, for polymers with Tg above room temperature, such as epoxy and polystyrene, the addition of the nanoplatelets is not working well for toughening these polymers. If the nanoplatelets are to enhance the mechanical properties of these polymers, it is necessary to build up a stress relaxation interface between the polymer and the nanoplatelet in order to reduce the effect of the difference between the relaxation time of nanofillers and that of polymers.
image

Force per area versus distance curves as a function of the difference of the relaxation times of the nanoplatelets and polymer chains.

Keywords:clay  fracture  molecular dynamics  nanocomposites  simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号