首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PKCalpha induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes
Authors:Seo Haeng Ran  Kwan Yoo-Wook  Cho Chul-Koo  Bae Sangwoo  Lee Su-Jae  Soh Jae-Won  Chung Hee-Yong  Lee Yun-Sil
Institution:Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-Ku, Seoul, 139-706, Korea.
Abstract:Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKCa isoform. When PKCalpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKCalpha kinase active mutant (PKCalpha- CAT) in the undifferentiated keratinocyte, but not PKCbeta-CAT, also increased differentiation marker expressions. On the other hand, PKCalpha dominant negative mutant (PKCbeta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKCbeta-KR did not, suggesting that PKCalpha is responsible for keratinocyte differentiation. When downstream pathway of PKCalpha in Ca2+ -mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+ -mediated differentiation, and that only ERK1/2 pathway is specific for PKCalpha-mediated differentiation in mouse keratinocytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号