首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Local and non‐local ductile damage and failure modelling at large deformation with applications to engineering
Authors:Bob Svendsen  Frederik Reusch  Dietmar Klingbeil
Abstract:The numerical analysis of ductile damage and failure in engineering materials is often based on the micromechanical model of Gurson 1]. Numerical studies in the context of the finite‐element method demonstrate that, as with other such types of local damage models, the numerical simulation of the initiation and propagation of damage zones is strongly mesh‐dependent and thus unreliable. The numerical problems concern the global load‐displacement response as well as the onset, size and orientation of damage zones. From a mathematical point of view, this problem is caused by the loss of ellipticity of the set of partial di.erential equations determining the (rate of) deformation field. One possible way to overcome these problems with and shortcomings of the local modelling is the application of so‐called non‐local damage models. In particular, these are based on the introduction of a gradient type evolution equation of the damage variable regarding the spatial distribution of damage. In this work, we investigate the (material) stability behaviour of local Gurson‐based damage modelling and a gradient‐extension of this modelling at large deformation in order to be able to model the width and other physical aspects of the localization of the damage and failure process in metallic materials.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号