首页 | 本学科首页   官方微博 | 高级检索  
     

ON THE ASYMPTOTIC BEHAVIOR OF HOPFIELD NEURAL NETWORK WITH PERIODIC INPUTS
引用本文:向兰,周进,刘曾荣,孙姝. ON THE ASYMPTOTIC BEHAVIOR OF HOPFIELD NEURAL NETWORK WITH PERIODIC INPUTS[J]. 应用数学和力学(英文版), 2002, 23(12): 1367-1373. DOI: 10.1007/BF02438376
作者姓名:向兰  周进  刘曾荣  孙姝
作者单位:Department of Physics,Hebei University of Technology,Department of Physics,Hebei University of Technology,Department of Mathematics,Shanghai University,Naval Submarine Academy Tianjin 300130,PR China,Tianjin 300130,PR China,Department of Mathematics,Shanghai University,Shanghai 200436,P R China,Shanghai 200436,P R China,Qingdao 266071,PR China
摘    要:IntroductionSincethespecialsuperiorityofartificialneuralnetworkstechnologyinvariousengineeringtechniquesfields,suchasoptimization ,associativememories,patternrecognition ,signalprocessingandautomaticcontrol,therehasbeenincreasinginterestintheinvestigati…

关 键 词:Hopfield neural network  periodic solution  global exponential stability  coincidence degree  Liapunov’s function
收稿时间:2001-07-24

On the asymptotic behavior of hopfield neural network with periodic inputs
Xiang Lan Associate Professor,Zhou Jin,Liu Zeng-rong,Sun Shu. On the asymptotic behavior of hopfield neural network with periodic inputs[J]. Applied Mathematics and Mechanics(English Edition), 2002, 23(12): 1367-1373. DOI: 10.1007/BF02438376
Authors:Xiang Lan Associate Professor  Zhou Jin  Liu Zeng-rong  Sun Shu
Affiliation:1. Departnent of Physics, Hebei University of Technology, Tianjin 300130, P R China
2. Departnent of Physics, Hebei University of Technology, Tianjin 300130, P R China;Department of Mathematics, Shanghai University, Shanghai 200436, P R China
3. Department of Mathematics, Shanghai University, Shanghai 200436, P R China
4. Naval Submarine Academy, Qingdao 266071, P R China
Abstract:Without assuming the boundedness and differentiability of the nonlinear activation functions,the new sufficient conditions of the existence and the global exponential stability of periodic solutions for Hopfield neural network with periodic inputs are given by using Mawhin's coincidence degree theory and Liapunov's function method.
Keywords:Hopfield neural network  periodic solution  global exponential stability  coincidence degree  Liapunov's function
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号