首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic theory of dense fluids. IV. Entropy balance equation and irreversible thermodynamics
Authors:Byung C Eu
Institution:Department of Chemistry, McGill University, Montreal, Quebec, Canada
Abstract:The viscosity coefficient obtained in a previous paper of this series is calculated as a function of density by developing the N-particle collision operator into a dynamic cluster expansion. The excess transport coefficient Δη is given in an exponential form, where η0 is the two-body Chapman-Enskog result for the transport coefficient, n is the density, and βl is a density-independent quantity consisting of connected cluster contributions of (l + 2) particles. Therefore, the leading term β1 consists of connected three-body cluster contributions. The excess shear viscosity coefficient is calculated for a monatomic hard-sphere fluid by computing βl up to the three-body contributions and the result is compared with the molecular dynamics result by Ashurst and Hoover and also with the experimental data on Ar at 75°C. In spite of the crudity of the potential model used and the approximations made the agreement is good. The result can be improved if l-body clusters (l 4) are included in the calculation. The thermal conductivity coefficient can be obtained in a similar form by using exactly the same procedure used for the viscosity coefficient.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号