首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hypersonic viscous shock layer in a swirling gas flow on a permeable surface
Authors:É A Gershbein  S V Peigin
Institution:(1) Moscow, Tomsk
Abstract:A hypersonic swirling flow of viscous compressible gas past rotating axisymmetric blunt bodies is considered, its velocity vector being parallel to the axis of rotation of the body. The body surface is assumed permeable, while, in the general case, the gas is not injected (drawn off) along the normal to the body surface. An analytic solution of the problem, valid at small Reynolds numbers, is found in the first approximation of the integral method of successive approximations. On the basis of the results of the numerical solution, obtained in a wide range of variation of the determining parameters of the problem, we investigate the influence of the swirling of the free-stream flow, the angular velocity of rotation of the body, the Reynolds number and the injection (suction) parameter on the structure of the compressed layer, and the coefficients of friction and heat transfer on the body surface. The influence of the swirling of the flow on the nature of the asymptotic behavior of the viscous shock layer equations at large Reynolds numbers is studied. It is shown that the presence of a nonzero peripheral component for the velocity vector of the gas in the shock layer can lead to a qualitative change in the nature of the flow. Deceased Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 27–37, November–December, 1986. The authors thank G. G. Chernyi for his useful discussion of the results of the work.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号