首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron states in quantum-dot and antidot arrays placed in a strong magnetic field
Authors:V Ya Demikhovskiĭ  A A Perov
Institution:(1) 603600 Nizhnii Novgorod, Russia
Abstract:Quantum electronic states in a dot (antidot) array in the presence of a dc magnetic field are studied. A new method of numerical calculation of the electron spectrum and wave functions in a two-dimensional periodic potential and perpendicular magnetic field is proposed. The magnetic-subband energies, density of electron states, and electron density |ψ(x,y)|2, as well as the amplitude of the potential, and lattice period and degree of anisotropy for different magnetic fields have been found. The calculations were performed for quantum dots in the In0.2Ga0.8As-GaAs and GaAs-Al0.3Ga0,7As systems. The rearrangement of the spectrum with variation of magnetic field and with transition from the tight-binding MediaObjects/Figure1.jpg to weak-binding MediaObjects/Figure2.jpg approximation is studied (ω c is the cyclotron frequency, and V 0 is the periodic-potential amplitude). The calculations show that the two-dimensional lattices epitaxially grown presently on semiconductor surfaces permit observation of quantum effects associated with rearrangement of the spectrum (electron transport and optical absorption) in magnetic fields H⩽1 MG. Fiz. Tverd. Tela (St. Petersburg) 40, 1134–1139 (June 1998)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号