首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular Size and Electronic Structure Combined Effects on the Electrogenerated Chemiluminescence of Sulfurated Pyrene‐Cored Dendrimers
Authors:Dr. Giovanni Valenti  Dr. Andrea Fiorani  Dr. Simone Di Motta  Dr. Giacomo Bergamini  Prof. Marc Gingras  Prof. Paola Ceroni  Prof. Fabrizia Negri  Prof. Francesco Paolucci  Prof. Massimo Marcaccio
Affiliation:1. Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna (Italy);2. Aix‐Marseille Université, CNRS, CINaM UMR 7325, 163 Ave. de Luminy, 13288 Marseille (France)
Abstract:The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation–anion annihilation is an energy‐deficient process and, thus, the ECL has been justified through the triplet–triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron‐transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.
Keywords:cyclic voltammetry  dendrimers  electrochemiluminescence  electron transfer  quantum chemical calculations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号