首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of thermomechanical fracture of functionally graded materials with respect to multiple crack interaction
Authors:V. E. Petrova  S. Schmauder
Affiliation:1.IMWF,University of Stuttgart,Stuttgart,Germany;2.Voronezh State University,Voronezh,Russia
Abstract:Different aspects of thermomechanical fracture of functionally graded materials (FGMs) are considered. Among them are the crack interaction problems in a functionally graded coating on a homogeneous substrate (FGM/H). The interaction between systems of edge cracks is investigated, as well as, how this mutual interaction influences the fracture process and the formation of crack patterns. The problem is formulated with respect to singular integral equations which are referred to the boundary equation methods. The FGM properties are modeled by exponential functions. The main fracture characteristics are calculated, namely, the stress intensity factors, the angles of deviation of the cracks from their initial propagation direction and the critical stresses when the crack starts to propagate. The last two characteristics are calculated using an appropriate fracture criterion. The problem contains different parameters, such as the geometry (location and orientation of cracks, their lengths, and the width of the FGM layer) and material parameters, i.e. the inhomogeneity parameters of elastic and thermal coefficients of the functionally graded material. The influence of these parameters on the thermo-mechanical fracture of FGM/H is investigated. As examples the following real material combinations are discussed: TiC/SiC, Al2O3/MoSi2, MoSi2/SiC, ZrO2/nickel and ZrO2/steel.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号