首页 | 本学科首页   官方微博 | 高级检索  
     


A single transition state serves two mechanisms: an ab initio classical trajectory study of the electron transfer and substitution mechanisms in reactions of ketyl radical anions with alkyl halides
Authors:Bakken V  Danovich D  Shaik S  Schlegel H B
Affiliation:Contributions from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
Abstract:Molecular dynamics has been used to investigate the reaction of a series of ketyl anion radicals and alkyl halides, CH2O(*)(-) + CH3X (X = F, Cl, Br) and NCCHO(*)(-) + CH3Cl. In addition to a floppy outer-sphere transition state which leads directly to ET products, there is a strongly bound transition state that yields both electron transfer (ET) and C-alkylated (SUB(C)) products. This common transition state has significant C-- C bonding and gives ET and SUB(C) products via a bifurcation on a single potential energy surface. Branching ratios have been estimated from ab initio classical trajectory calculations. The SUB(C) products are favored for transition states with short C--C bonds and ET for long C--C bonds. ET reactivity can be observed even at short distances of r(C)(-)(C) = ca. 2.4 A as in the transition state for the reaction NCCHO(*)(-) + CH3Cl. Therefore, the ET/SUB(C) reactivity is entangled over a significant range of the C--C distance. The mechanistic significance of the molecular dynamics study is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号