首页 | 本学科首页   官方微博 | 高级检索  
     


Ligand-controlled mixed-valence copper rectangular grid-type coordination polymers based on pyridylterpyridine
Authors:Hou Lei  Li Dan  Shi Wen-Juan  Yin Ye-Gao  Ng Seik Weng
Affiliation:Departments of Chemistry, Shantou University, Guangdong, PR China.
Abstract:Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号