首页 | 本学科首页   官方微博 | 高级检索  
     

精确稀疏扩展信息滤波的多机器人SLAM研究
引用本文:明钊光,石守东,王刚. 精确稀疏扩展信息滤波的多机器人SLAM研究[J]. 宁波大学学报(理工版), 2014, 0(4): 42-46
作者姓名:明钊光  石守东  王刚
作者单位:宁波大学 信息科学与工程学院,浙江 宁波,315211
基金项目:浙江省教育厅科研项目,宁波市自然科学基金
摘    要:在机器人同时定位与地图创建(SLAM)问题中,多机器人SLAM成为目前机器人学中的研究热点.因此,基于精确稀疏扩展信息滤波算法(ESEIF)的多机器人SLAM问题,根据多机器人的运动模型和观测模型分别对多机器人位姿估计及环境特征点进行观测,并依据阈值划分观测特征点,以完成机器人的观测更新,同时边缘化机器人位姿并进行重定位.实验仿真数据表明:多机器人的位姿精度良好,观测更新阶段时间基本上恒定,与地图特征点数量无关,体现了ESEIF算法在研究多机器人SLAM问题的有效性.

关 键 词:SLAM  多机器人  精确稀疏扩展信息滤波  重定位

Multi-robot SLAM with Exactly Sparse Extended Information Filtering
MING Zhao-guang,SHI Shou-dong,WANG Gang. Multi-robot SLAM with Exactly Sparse Extended Information Filtering[J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2014, 0(4): 42-46
Authors:MING Zhao-guang  SHI Shou-dong  WANG Gang
Affiliation:( College of Information Science and Engineering, Ningbo University, Ningbo 315211, China )
Abstract:In the robot simultaneous localization and mapping(SLAM) problem, the Multi-robot SLAM has drawn much attention recently in robotics. This paper investigates the Multi-robot SLAM problem in using exactly sparse extended information filters algorithm(ESEIF): Based on both the multi-robot motion model and observation model, the multi-robot pose is estimated and the environment features are observed. The threshold is set for partitioning and updating the observed features, and marginalizing the robot pose followed by relocating the robot. The simulation shows that the robots pose can be accurately estimated, and observation can be updated in a constant time fashion irrespective of the number of features in the map.
Keywords:SLAM  Multi-robot  exactly sparse extended information filters  relocalization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号