首页 | 本学科首页   官方微博 | 高级检索  
     

锐钛矿相和金红石相Nb:TiO_2电学性质的GGA(+U)法研究
引用本文:杨振辉,王菊,刘涌,王慷慨,苏婷,郭春林,宋晨路,韩高荣. 锐钛矿相和金红石相Nb:TiO_2电学性质的GGA(+U)法研究[J]. 物理学报, 2014, 63(15): 157101-157101. DOI: 10.7498/aps.63.157101
作者姓名:杨振辉  王菊  刘涌  王慷慨  苏婷  郭春林  宋晨路  韩高荣
作者单位:硅材料国家重点实验室和浙江大学材料科学与工程学系, 杭州 310027
基金项目:国家自然科学基金(批准号:51002135,51172200);中央高校基础科研基金(批准号:2013QNA4011)资助的课题~~
摘    要:采用基于密度泛函理论第一性原理GGA和GGA+U相结合的方法研究了不同掺杂浓度下锐钛矿相和金红石相Nb:TiO2的晶体结构、电子结构以及稳定性.结果表明:锐钛矿相Nb:TiO2能带结构与简并半导体类似,呈类金属导电机理.金红石相Nb:TiO2呈半导体导电机理.Nb原子比Ti原子电离产生出更多的电子.锐钛矿相Nb:TiO2中Nb原子的电离率比金红石相Nb:TiO2的大.以上结果说明锐钛矿相Nb:TiO2比金红石相Nb:TiO2更适宜用作TCO材料;掺杂浓度对其杂质能级,费米能级和有效质量都有影响.Nb原子掺杂浓度越高,材料电离率呈降低趋势;形成能计算结果显示:在富钛条件下不利于Nb原子的掺杂,而在富氧条件下有利于Nb原子的掺杂.对于金红石相和锐钛矿相Nb:TiO2,不论是在贫氧或富氧条件下,随着Nb原子掺杂浓度的提高,形成能均增大.

关 键 词:第一性原理研究  电子结构  稳定性  Nb:TiO2
收稿时间:2014-03-06

Investigation on the electrical properties of anatase and rutile Nb-doped TiO2 by GGA(+U)
Yang Zhen-Hui,Wang Ju,Liu Yong,Wang Kang-Kai,Su Ting,Guo Chun-Lin,Song Chen-Lu,Han Gao-Rong. Investigation on the electrical properties of anatase and rutile Nb-doped TiO2 by GGA(+U)[J]. Acta Physica Sinica, 2014, 63(15): 157101-157101. DOI: 10.7498/aps.63.157101
Authors:Yang Zhen-Hui  Wang Ju  Liu Yong  Wang Kang-Kai  Su Ting  Guo Chun-Lin  Song Chen-Lu  Han Gao-Rong
Abstract:Crystal structure, electronic properties, and stability of anatase and rutile Nb-doped TiO2 (Nb:TiO2) compounds with different doping concentrations are studied by the combination of GGA and GGA+U methods within the density functional theory based first-principle calculation. And the main research work and contents are listed as follows: The anatase Nb:TiO2 appears as a degenerated semiconductor which behaves as an intrinsic metal. Its metallic property arises from Nb substitution into the Ti site, providing electrons to the conduction band. In contrast, the rutile Nb:TiO2 shows insulating behaviors. Ionization efficiency of Nb in anatase Nb:TiO2 is higher than that in rutile. We expect that anatase Nb:TiO2 is a potential material for transparent conducting oxide (TCO) while rutile Nb:TiO2 is not. The doped systems show different electronic characteristics, such as band structure, Fermi energy, and effective mass of carriers at different doping levels. In higher dopant concentration nNb, the ionization efficiency decreases slightly. Calculated defect-formation energy shows that Ti-rich material growth conditions are not in favor of the introduction of Nb while Nb can be easily doped in Nb:TiO2 under O-rich growth conditions. Nb dopant is difficult to be doped at higher doping level for both anatase and rutile Nb:TiO2.
Keywords:first principle calculationelectronic structurestability2')" href="#">Nb:TiO2
Keywords:first principle calculation  electronic structure  stability  Nb:TiO2
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号