首页 | 本学科首页   官方微博 | 高级检索  
     


Observation of the Photoinduced Conductivity in a Regular Domain Structure with Tilted Walls in MgO:LiNbO3 at a Wavelength of 632.8 nm at Bragg Diffraction
Authors:Savchenkov  E. N.  Dubikov  A. V.  Sharaeva  A. E.  Burimov  N. I.  Shandarov  S. M.  Esin  A. A.  Akhmatkhanov  A. R.  Shur  V. Ya.
Affiliation:1.Tomsk State University of Control Systems and Radioelectronics, Tomsk, 634050, Russia
;2.Ural Federal University, Yekaterinburg, 620002, Russia
;3.Quantum Technology Center, Moscow State University, Moscow, 119991, Russia
;
Abstract:

A 632.8-nm radiation-induced change in the conductivity of a regular domain structure (RDS) formed in a 5% MgO:LiNbO3 crystal has been detected for the first time. As a result, the relaxation rate for the Bragg diffraction efficiency on the RDS, which is observed after the application of an external electric field, increases with the intensity of a probe beam. This dependence is linear in the initial stage of relaxation caused by the screening of the external field because of the redistribution of charges over tilted conductive domain walls of the RDS. For the probe beam with an intensity of 49 mW/mm2, the induced effective conductivity of the RDS, which is estimated as σeff = 3.5×10−9Ω−1m−1, is more than four orders of magnitude higher than the dark conductivity of the single-domain MgO:LiNbO3 sample.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号