首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assignment of the absolute configuration of hydroxy- and aminophosphonates by NMR spectroscopy
Authors:Katarzyna M Błażewska  Tadeusz Gajda
Institution:1. Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA;2. Institute of Organic Chemistry, Technical University of Lodz (Politechnika), ?eromskiego St. 116, 90-924 Lodz, Poland
Abstract:Phosphonate analogues of amino- and hydroxy acids have received considerable attention in bioorganic and medicinal chemistry due to their unique activities as peptidomimetics, being known as inhibitors of such enzymes as human renin, HIV protease and polymerase, leucine aminopeptidase and serine proteases. They have also been exploited as haptens for catalytic antibody research, herbicides, antibiotics, antiviral and anticancer agents and neuromodulators. Therefore, the demand for the asymmetric synthesis of hydroxy- and aminophosphonates should be accompanied by reliable methods for their absolute configuration assignment. NMR spectroscopy is one of the most commonly used techniques for the assignment of absolute configuration of different classes of compounds. This report describes the principles and practical aspects of applying chiral discriminating agents for the assignment of absolute configuration of 1- and 2-hydroxyphosphonates and 1- and 2-aminophosphonates by NMR spectroscopy. The report is organized in sections discussing the types of the chiral discriminating agents (including the models used for configuration assignment, if this was proposed) and the scope of their applications (with the list of all the examples of hydroxy- and aminophosphonates examined by this method). The application of the chiral derivatizing agents (CDA) and chiral solvating agents (CSA) used for these purposes, such as α-methoxy-α-(trifluoromethyl)phenylacetic acid (MTPA), α-methoxyphenylacetic acid (MPA), amino acids, diazaphospholidine, camphanic acid, naproxen, quinine and t-butylphenylphosphinothioic acid is discussed. Easy access to the selected values of the NMR chemical shifts observed for the diastereomeric species of the tested hydroxy- and aminophosphonates examined, will enable the reader to compare trends observed in spectra and subsequent absolute configuration assignment. In addition, any available complementary data confirming the configuration established by NMR (X-ray, chemical correlations, optical rotation) is also provided.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号