首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron capture dissociation of b (2+) peptide fragments reveals the presence of the acylium ion structure
Authors:Haselmann K F  Budnik B A  Zubarev R A
Institution:Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Abstract:Electron capture dissociation (ECD) of peptides and their fragments has now been extended to b ( n) ( 2+) ions, where it also produced far more structural information than collisional activation. Interestingly, b ( n) ( 2+) ions revealed abundant loss of CO from radical monocations and the presence of c ((n - 1)) ( +.) fragments. The CO loss from peptide radical cations is unusual and was attributed to neutralization of the -C identical with O(+) group in the acylium ion structure, supported by the observation of c ( (n - 1)) ( +.) ions that can only be formed from an open-chain ion. These characteristic features were most prominent for b ( 12)( 2+) ions of renin substrate and least prominent for b ( n) ( 2+) ions of substance P (n = 9,10). Totally, out of seven b ( n) ( 2+) ions studied, CO loss above 3% level was present in all spectra as well as c ( (n - 1))( +.) fragments of three species, suggesting that the acylium ion structure plays a significant role for at least some b ( 2+) ions. This is an unexpected result in view of the literature data for small, singly charged b ions, for which the protonated oxazolone structure is favoured in ab initio calculations. Apparently, more studies are required before extrapolating the small molecule results to large species. The CO loss in ECD can be used for distinguishing between b and y ions in the MS/MS spectrum of larger molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号