首页 | 本学科首页   官方微博 | 高级检索  
     检索      

锂-空气电池的实用化之路:规避二氧化碳负面效应
引用本文:王天杰,王耀伟,陈宇辉,刘建鹏,史会兵,郭丽敏,赵志伟,刘春太,彭章泉.锂-空气电池的实用化之路:规避二氧化碳负面效应[J].物理化学学报,2022,38(8):2009071-47.
作者姓名:王天杰  王耀伟  陈宇辉  刘建鹏  史会兵  郭丽敏  赵志伟  刘春太  彭章泉
作者单位:1 南京工业大学能源科学与工程学院,材料化学工程国家重点实验室,江苏 南京 2118162 山东京博石化有限公司,山东 博兴 2565003 大连交通大学环境与化工学院,辽宁 大连 1160284 中国科学院大连化学物理研究所,谱学电化学与锂离子电池实验室,辽宁 大连 1160235 郑州大学材料科学与工程学院,材料成型及模具技术教育部重点实验室,河南 郑州 4500026 五邑大学应用物理与材料学院,广东 江门 529020
基金项目:supported by the National Key R&D Program of China (2016YFB0100100, 2018YFB0104400);;the National Natural Science Foundation of China (21972055, 21825202, 21575135, 21733012, 51773092, 21975124, 21972133);;the Newton Advanced Fellowships of Royal Society of England (NAF/R2/180603)~~;
摘    要:与其他的锂电池体系相比,锂-空气电池具有最高的理论比能量,被认为有潜力成为终极能量转换和储存装置。目前的锂-空气电池常常使用气体钢瓶提供纯氧气,而非空气中的氧气,这种电池设计极大降低了锂-空气电池的能量密度和实用性。然而,当空气作为锂-空气电池的氧气供给源时,二氧化碳作为杂质会引起严重的副反应,从而降低锂-空气电池的性能。要解决二氧化碳引起的副反应,理解其反应机制至关重要。本文综述了锂-空气电池中有关二氧化碳诱发的化学/电化学反应的研究进展; 总结了可缓解二氧化碳负面效应的有效策略。此外,对二氧化碳选透膜材料和分离技术用于锂-空气电池进行了展望。

关 键 词:锂-空气电池  反应机制  二氧化碳分离  
收稿时间:2020-09-21

Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2
Tianjie Wang,Yaowei Wang,Yuhui Chen,Jianpeng Liu,Huibing Shi,Limin Guo,Zhiwei Zhao,Chuntai Liu,Zhangquan Peng.Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2[J].Acta Physico-Chimica Sinica,2022,38(8):2009071-47.
Authors:Tianjie Wang  Yaowei Wang  Yuhui Chen  Jianpeng Liu  Huibing Shi  Limin Guo  Zhiwei Zhao  Chuntai Liu  Zhangquan Peng
Abstract:The gradual popularization of new energy technologies has led to rapid development in the field of electric transportation. At present, the demand for high-power density batteries is increasing and next-generation higher-energy battery chemistries aimed at replacing current lithium-ion batteries are emerging. The lithium-air batteries (LABs) are thought to be the ultimate energy conversion and storage system, because of their highest theoretical specific energy compared with other known battery systems. Current LABs are operated with pure O2 provided by weighty O2 cylinders instead of the breathing air, and this configuration would greatly undermine LAB's energy density and practicality. However, when the breathing air is used as O2 feed for LABs, CO2, as an inevitable impurity therein, usually leads to severe parasitic reactions and can easily deteriorate the performance of LABs. Specifically, Li2O2 will react with CO2 to form Li2CO3 on the cathode surface. Compared with the desired discharge product Li2O2, the Li2CO3 is an insulating solid, which will accumulate and finally passivate the electrode surface leading to the "sudden death" phenomenon of LABs. Moreover, Li2CO3 is hard to decompose and a high overpotential is required to charge LABs containing Li2CO3 compounds, which not only degrades energy efficiency but also decomposes other battery components (e.g., cathode materials and electrolytes). In recent years, researchers have proposed many strategies to alleviate the negative effects brought about by Li2CO3, such as catalyst engineering, electrolyte design, and so on, in which O2 selective permeable membranes are worth noting. This review summarizes the recent progresses on the understanding of the CO2-related chemistry and electrochemistry in LABs and describes the various strategies to mitigate and even avoid the negative effects of CO2. The perspective of CO2 separation technology using selective permeable membranes/filters in the context of LABs is also discussed.
Keywords:Lithium-air battery  Reaction mechanism  CO2 separation  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号