首页 | 本学科首页   官方微博 | 高级检索  
     


On graphical and numerical characterization of proteomics maps
Authors:Randić M
Affiliation:National Institute of Chemistry, Ljubljana, Slovenia. milan.randic@ki.si
Abstract:We outlined a mathematical approach suitable for characterization of experimental data given by 2-D densitograms. In particular we consider numerical characterization of proteomics maps. The basis of our approach is to order "spots" of a 2-D map and assign them unique labels (that in general will depend on the criteria used for ordering). In this way a map is "translated" into a sequence. In the next step one associates with the generated sequence a geometrical path and views such a path as a mathematical object that needs characterization. We have ordered spots representing proteins in 2-D gel plates according to their relative intensities which results in a zigzag path that produces a complicated "fingerprint" pattern. Mathematical characterization of zigzag pattern follows similar mathematical characterizations of embedded patterns based on matrices, the elements of which are given as quotients of Euclidean distance between spots and the distance along the zigzag path. The leading eigenvalue of constructed matrices is taken to represent characterization of the original 2-D map. Comparison of different 2-D maps (simulated by using random generator) allows one to construct partial order, which although qualitative in nature gives some insight into perturbation induced by foreign agents to the proteome of the control cell.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号