首页 | 本学科首页   官方微博 | 高级检索  
     


Active noise control with linear control source and sensor arrays for a noise barrier
Authors:Carl R. Hart  Siu-Kit Lau
Affiliation:The Charles W. Durham School of Architectural Engineering and Construction, University of Nebraska – Lincoln, 1110 S 67th Street, Omaha, NE 68182-0816, USA
Abstract:A study is conducted on minimizing the sum of the squared acoustic pressures with a linear array of control sources and a perpendicular linear array of error sensors, placed above the top of a noise barrier. Particular angular orientations, with respect to the center of the barrier top, and spacings of the linear arrays of control sources and error sensors result in moderate to significant additional reduction of the acoustic pressure in the shadow zone. Visual inspection of the sound pressure field, with and without active noise control, found that uniform and significant additional insertion loss can be generated near the barrier. Numerical simulations were conducted to test the proposed method. For separations between control sources and error sensors much less than a quarter wavelength of the primary noise disturbance, results show that the angular orientation, of the combined linear control source and sensor arrays, is a weak factor for acoustic pressure reduction in the shadow zone. Weak angle dependence serves as an advantage to the proposed method, which yields uniform performance for any angular orientation. An angular orientation involving the alignment of the furthest error sensor with the first diffracting edge of the barrier and the primary source was observed to perform well for a variety of frequencies, since the spacing between error sensors and between control sources is of the order of a quarter-wavelength. Improved noise control in the shadow zone of a barrier is achieved by the use of two control sources and angular orientation as mentioned above. Further spatial extension of the area of reduced acoustic pressure is possible by utilizing an increased number of control sources.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号