首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of phosphate buffer solutions on the reactions of glutathione with hydrogen peroxide and peroxyl radicals
Authors:Zinatullina  K M  Kasaikina  O T  Kuzmin  V A  Khrameeva  N P  Pisarenko  L M
Institution:1.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991, Moscow, Russian Federation
;2.N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991, Moscow, Russian Federation
;
Abstract:

Differences in the kinetics and mechanism of the reaction of glutathione (GSH) with hydrogen peroxide (H2O2) in deionized water and in phosphate buffer systems with pH ≥ 7 frequently used in biochemical studies were revealed. The formation of GSH dimers and complexes with H2O2 in water plays a substantial role in the kinetics of the process, which is manifested as nonlinear dependences of the rate of GSH consumption (WGSH) and the rate of radical formation (Wi) on the reagent concentrations. In phosphate buffer solutions (PBS), the oxidation of GSH by air oxygen is enhanced and the radical formation rate decreases sharply. An effect of NaCl and KCl in PBS on WGSH and Wi was observed, unlike a sodium—potassium phosphate buffer mixture (PB). Under other equivalent conditions, WGSH PBS is several times lower and Wi is higher than those in PB containing no chlorides. It was found that the rate of the thiol-ene reaction of unsaturated phenol resveratrol (RVT) with GSH initiated by the radicals formed in the presence of H2O2 in PBS is nearly three times lower than that in water, whereas in PB resveratrol is not consumed under the same conditions. However, in the reactions with peroxyl radicals formed upon the decomposition of 2,2′-azobis(2-methylpropionamidine) dihydrochloride the GSH consumption rate is the same in both phosphate buffer systems.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号