首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase
Authors:Major Dan Thomas  Gao Jiali
Institution:Department of Chemistry and Supercomputing Institute, Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Abstract:Combined quantum mechanical/molecular mechanical simulations have been carried out to investigate the origin of the carbon acidity enhancement in the alanine racemization reaction catalyzed by alanine racemase (AlaR). The present study shows that the enhancement of carbon acidity of alpha-amino acids by the cofactor pyridoxal 5'-phosphate (PLP) with an unusual, unprotonated pyridine is mainly due to solvation effects, in contrast to the intrinsic electron-withdrawing stabilization by the pyridinium ion to form a quinonoid intermediate. Alanine racemase further lowers the alpha-proton acidity and provides an overall 14-17 kcal/mol transition-state stabilization. The second key finding of this study is that the mechanism of racemization of an alanine zwitterion in water is altered from an essentially concerted process to a stepwise reaction by formation of an external aldimine adduct with the PLP cofactor. Finally, we have used a centroid path integral method to determine the intrinsic kinetic isotope effects for the two proton abstraction reactions, which are somewhat greater than the experimental estimates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号