首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes
Authors:Iwona Soroko  Andrew Livingston  
Affiliation:aDepartment of Chemical Engineering and Chemical Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
Abstract:Chemically crosslinked polyimide organic–inorganic composite nanofiltration membranes suitable for application in harsh organic solvents were successfully prepared by phase inversion of dope solutions. TiO2 nanoparticles were dispersed in these dope solutions, comprising polyimide (PI) in N,N-dimethylformamide/1,4-dioxane. The impact of TiO2 on the resulting PI membranes was investigated using SEM, TGA, water contact angle, dope viscosity measurements and mechanical strength. The presence of TiO2 nanoparticles within the membrane matrix was proved by the detection of a peak characteristic of TiO2 in the WAXS pattern. SEM pictures of the cross-section of the PI/TiO2 membranes showed dramatically changed morphology compared to reference membranes with no TiO2 addition. Macrovoids present in reference membranes were suppressed by increasing loading of TiO2 nanoparticles, and eventually disappeared completely at a TiO2 loading above 3 wt.%. Decreasing water contact angle and an increase in ethanol flux indicated that hydrophilicity increased as nanoparticle loading increased. The effect of TiO2 on the functional performance of the membranes was evaluated by measuring flux and rejection using cross-flow filtration. Perhaps surprisingly, the presence of TiO2 improved the compaction resistance of the membranes, whereas rejection and steady flux were almost unaltered.
Keywords:Polyimide   Membrane   TiO2 nanoparticles   Organic solvent nanofiltration (OSN)   Macrovoids
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号