首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bounded diffusion in solid solution electrode powder compacts. Part II. The simultaneous measurement of the chemical diffusion coefficient and the thermodynamic factor in LixTiS2 and LixCoO2
Authors:A Honders  JM der Kinderen  AH van Heeren  JHW de Wit  GHJ Broers
Institution:Inorganic Chemistry Department, State University of Utrecht, Croesestraat 77A, 3522 AD Utrecht, The Netherlands
Abstract:Two electrochemical methods - involving the application of a long-time galvanostatic current pulse and a small potentiostatic voltage step to a M/MxSSE cell - are presented. From the overvoltage, respectively current response the chemical diffusion coefficient (DM+) and the thermodynamic factor (? ln a/? ln c) are obtained. The methods have been applied to the cells: Li/1M·LiClO4 in propylenecarbonate/LixTi1.03S2 0.05 < x < 0.95, T = 20°C; and LixCoO2 0.10 < × < 1, T = 20°C. From the application of the current pulse/voltage decay method it followed: DLi+(LixTi1.03S2) = 1?4 × 10?8cm2s?1, with a slight tendency to increase with decreasing x; DLiC(LixCoO2) = 2?40 × 10?9cm2s?1, decreasing with decreasing x. These values are among the highest found for solid state Li+-ion diffusion, and will be closely evaluated and compared with data reported by other workers. The x-dependence of the thermodynamic factor, determined from kinetic data, for LixTi1.03S2 (x = 0.05-0.95) and LixCoO2 (x = 0.60-1.00) is in accordance with a simple thermodynamic model. Unlike for LixTi1.03S2, the thermodynamic factor for LixCoO2, determined from the EMF-x relation, cannot be accounted for by this model. Furthermore, a fast, but crude method to determine the average chemical diffusion coefficient in LixTi1.03S2 and LixCoO2 is discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号