The Role of Substituent Effects in Tuning Metallophilic Interactions and Emission Energy of Bis‐4‐(2‐pyridyl)‐1,2,3‐triazolatoplatinum(II) Complexes |
| |
Authors: | M. R. Ranga Prabhath Dr. Julia Romanova Prof. Richard J. Curry Prof. S. Ravi P. Silva Dr. Peter D. Jarowski |
| |
Affiliation: | University of Surrey, Advanced Technology Institute, Guildford, GU2 7XH (UK) |
| |
Abstract: | The photoluminescence spectra of a series of 5‐substituted pyridyl‐1,2,3‐triazolato PtII homoleptic complexes show weak emission tunability (ranging from λ=397–408 nm) in dilute (10?6 M ) ethanolic solutions at the monomer level and strong tunability in concentrated solutions (10?4 M ) and thin films (ranging from λ=487–625 nm) from dimeric excited states (excimers). The results of density functional calculations (PBE0) attribute this “turn‐on” sensitivity and intensity in the excimer to strong Pt–Pt metallophilic interactions and a change in the excited‐state character from singlet metal‐to‐ligand charge transfer (1MLCT) to singlet metal‐metal‐to‐ligand charge transfer (1MMLCT) emissions in agreement with lifetime measurements. |
| |
Keywords: | charge transfer density functional calculations photoluminescence platinum stacking interactions |
|