首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology
Abstract:Computational strategies have been employed to investigate the influence of the nature of monomers and cross-linker in order to design three dimensional imprinted polymers with selective recognition sites for L-phenylalanine benzyl ester(L-PABE) molecule.Here, computational chemistry methods were applied to screen the molar quantity of functional monomers that interact with one mole of the template molecule. Effects of the nature of functional monomer, cross-linker, and molar ratio were determined computationally using density functional calculations with B3LYP functional and generic 6-31G basis set. Methacrylic acid(MAA) and ethylene glycol dimethacrylate(EGDMA) were used as the functional monomer and crosslinking agent, respectively. L-PABE imprinted polymer layered on multiwalled carbon nanotube(MWCNT) and conventional bulk MIP were synthesised and characterized as well. To investigate the influence of pre-organization of binding sites on the selectivity of L-PABE, respective non-imprinted polymers were also synthesised.MWCNT-MIPs and MIPs exhibited the highest adsorption capacity towards L-PABE. The synthesized polymers revealed characteristic adsorption features and selectivity towards L-PABE in comparison with those of its enantiomer analogues.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号