Abstract: | Due to the severe environmental issues, many advanced technologies, typically fuel cells and metal-air batteries have aroused widespread concerns and been intensively studied in recent years. However, oxygen redox reactions including oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) as the core reactions suffer from sluggish kinetics of the multiple electron transfer process. Currently, Pt, RuO_2, and IrO_2 are considered to be the benchmark catalysts for ORR and OER, but their high price, scarcity and instability hinder them from large-scale application. To overcome these limits, exploring alternative electrocatalysts with low cost, high activity, long-term stability, and earth-abundance is of extreme urgency. Metal-organic frameworks(MOFs) are a family of inorganic-organic hybrid materials with high surface areas and tunable structures, making them proper as catalyst candidates. Herein, the recent progress of MOFs and MOF-derived materials for ORR and OER is systematically reviewed, and the relationship between compositions and electrochemical performance is discussed. It is expected that this review can be helpful for the future development of related MOF-based materials with excellent electrochemical performance. |