首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency response study of the dynamics of the platinum catalyzed interconversion of methylcyclohexane, toluene, and hydrogen near equilibrium
Authors:Reyes Sebastian C  Sinfelt John H  DeMartin Gregory J
Affiliation:Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, USA. sebastian.c.reyes@exxonmobil.com
Abstract:The dynamics of the platinum catalyzed interconversion of methylcyclohexane, toluene, and hydrogen near equilibrium were investigated in a closed reactor system by a frequency response method at temperatures in the range of 433 to 473 K and at total pressures in the vicinity of 80 to 110 Torr. The gas phase in contact with the platinum catalyst was always hydrogen-rich, with hydrogen to hydrocarbon mole ratios maintained in the range of 3.2 to 4.6. The frequency response method utilized small perturbations (lower than 1%) of the volume of the system, with measurements of the total pressure being used to determine the response of the system. The range of perturbation frequencies investigated was approximately 0.002 to 3 Hz (0.013 to 19 rad s(-1)). The experiments revealed two characteristic relaxation frequencies that are associated with the dynamics of the interconversion. The dynamics of the system are interpreted in terms of a simple two-step interconversion sequence with the aid of a phenomenological frequency response theory formulated in terms of relaxation frequencies of the steps and equilibrium properties of the system. It is concluded that one of the steps, a toluene adsorption-desorption step, is much slower than the other, a step involving the interconversion of the gas-phase methylcyclohexane and chemisorbed toluene that releases or consumes hydrogen in the process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号