首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-frequency auditory filter shape for the Atlantic bottlenose dolphin
Authors:David W Lemonds  Whitlow W L Au  Stephanie A Vlachos  Paul E Nachtigall
Institution:Information Systems and Global Services (IS&GS), Lockheed Martin Corp., 3375 Koapaka Street, Suite I-500, Honolulu, Hawaii 96819.
Abstract:High-frequency auditory filter shapes of an Atlantic bottlenose dolphin (Tursiops truncatus) were measured using a notched noise masking source centered on pure tone signals at frequencies of 40, 60, 80 and 100?kHz. A dolphin was trained to swim into a hoop station facing the noise/signal transducer located at a distance of 2?m. The dolphin's masked threshold was determined using an up-down staircase method as the width of the notched noise was randomly varied from 0, 0.2, 04, 0.6, and 0.8 times the test tone frequency. The masked threshold decreased as the width of the notched increased and less noise fell within the auditory filter associated with the test tone. The auditory filter shapes were approximated by fitting a roex (p,r(r)) function to the masked threshold results. A constant-Q value of 8.4 modeled the results within the frequency range of 40 to 100 kHz relatively well. However, between 60 and 100?kHz, the 3?dB bandwidth was relatively similar between 9.5 and 10?kHz, indicating a constant-bandwidth system in this frequency range The mean equivalent rectangular bandwidth calculated from the filter shape was approximately 16.0%, 17.0%, 13.6% and 11.3% of the tone frequencies of 40, 60, 80, and 100?kHz.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号