首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of static pressure on the inertial cavitation threshold
Authors:Kenneth B Bader  Jason L Raymond  Joel Mobley  Charles C Church  D Felipe Gaitan
Institution:Department of Physics, University of Mississippi, National Center for Physical Acoustics, 1 Coliseum Drive, University, Mississippi 38677.
Abstract:The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30?MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号