首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis
Authors:Nam Seong-Won  Van Noort Danny  Yang Yoonsun  Park Sungsu
Institution:Division of Nano Sciences (BK21 program), Ewha Womans University, Daehyundong, Seodaemun-gu, Seoul, 120-750, Korea.
Abstract:In this study, we introduce a microfluidic device equipped with pneumatically actuated valves, generating a linear gradient of chemoeffectors to quantify the chemotactic response of Tetrahymena pyriformis, a freshwater ciliate. The microfluidic device was fabricated from an elastomer, poly(dimethylsiloxane) (PDMS), using multi-layer soft lithography. The components of the device include electronically controlled pneumatic microvalves, microchannels and microchambers. The linear gradient of the chemoeffectors was established by releasing a chemical from a ciliate-free microchamber into a microchamber containing the ciliate. The ciliate showed chemotactic behaviours by either swimming toward or avoiding the gradient. By counting the number of ciliates residing in each microchamber, we obtained a precise time-response curve. The ciliates in the microfluidic device were sensitive enough to be attracted to 10 pmol glycine-proline, which indicates a 10(5) increase in the ciliate's known sensitivity. With the use of blockers, such as DL-2-amino-5-phosphonopentanoic acid (APPA) or lanthanum chloride (LaCl3), we have demonstrated that the NMDA (N-methyl-d-aspartate) receptor plays a critical role in the perception of chemoeffectors, whereas the Ca2+ channel is related to the motility of the ciliate. These results demonstrate that our microfluidic chemotaxis assay system is useful not only for the study of ciliate chemotaxis but also for a better understanding of the signal transduction mechanism on their receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号