首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Limiting stresses in spatially reinforced composites with components-having different structural geometries nd elastic properties
Authors:V A Polyakov  I G Zhigun  R P Shlitsa  V V Khitrov
Institution:(1) Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga
Abstract:A model which is proposed for calculating structural stresses in spatially reinforced composites and an invariant-polynomial criterion for evaluating their limiting values are used to predict the effect of the elastic and strength properties of the components and their relative content on the limiting stress-strain state of composites of different structures. Emphasis is given to tri-orthogonal and 4D cubic structures, in addition to structures with hexagonal and angle-ply fiber reinforcement schemes in the plane and perpendicular to it. The types of composite loading typical of standard tests are examined in separate numerical experiments for shear, tension, compression, and their proportional combination. A computational variant of a criterional estimate of the limiting stresses is substantiated for an anisotropic composite of variable strength. The limiting-stress surface is obtained along with contour maps showing stress isolines as a function of the properties of the components and the geometry of the structure. The maps are suitable for practical use. The cases of maximum resistance to shear, tension, compression, and combination loading of 3D and 4D composites are compared to the analogous cases for two-dimensional structures.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 616–639, September–October, 1995.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号