首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excitonic representation: Collective excitation spectra in the quantized Hall regime and spin biexciton
Authors:S M Dickmann  V M Zhilin  D V Kulakovskii
Institution:(1) Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
Abstract:The excitonic representation method for describing collective excitations in the quantized Hall regime makes it possible to simplify analysis of the spectra and to obtain new results in the strong magnetic field limit, when E C ??ωcc is the cyclotron frequency and EC is the characteristic Coulomb energy). For an integer odd filling factor ν greater than unity (i.e., for ν = 3, 5, 7,...), the spectra of one-cyclotron magneto-plasma excitations are calculated. For unit filling factor, the existence of a spin biexciton (bound state of two spin waves) corresponding to excitation with a spin change (δS = δSz = ?2) is proved. The exact equation determining the ground state of the biexciton is derived in the thermodynamic limit NΦ → ∞ (N? is the system degeneracy). The exchange energy of this state is lower than for a single spin wave (with δS = δSz = ?1) for the same value of the 2D wavevector q. In the limit q → ∞ corresponding to the decay of a biexciton into a pair of quasiparticles one of which is a trion with a spin of ?3/2, the energy is found to be lower than the energy (e2/εl B )√π/2 required for exciting an electron-hole pair in the strictly 2D case (lB is the magnetic length and ε is the dielectric constant), although this energy is higher than another “classical” result (e2/εl B )√π/2, corresponding to the excitation of a skyrmion-antiskyrmion pair (|δS|=|δS z |?1). The solution of the exact equation gives the trion binding energy and the activation gap for quasiparticles whose excitation corresponds to a change in the total spin by δS = δ Sz =?3. The energy of a spin biexciton is calculated for values of the wavevector such that ql B ?1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号