首页 | 本学科首页   官方微博 | 高级检索  
     


The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions
Authors:Forbes Barbara J  Pike E Roy  Sharp David B
Affiliation:Department of Environmental and Mechanical Engineering, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom. forbes@phonologica.com
Abstract:The transformed form of the Webster equation is investigated. Usually described as analogous to the Schr?dinger equation of quantum mechanics, it is noted that the second-order time dependency defines a Klein-Gordon problem. This "acoustical Klein-Gordon equation" is analyzed with particular reference to the acoustical properties of wave-mechanical potential functions, U(x), that give rise to geometry-dependent dispersions at rapid variations in tract cross section. Such dispersions are not elucidated by other one-dimensional--cylindrical or conical--duct models. Since Sturm-Liouville analysis is not appropriate for inhomogeneous boundary conditions, the exact solution of the Klein-Gordon equation is achieved through a Green's-function methodology referring to the transfer matrix of an arbitrary string of square potential functions, including a square barrier equivalent to a radiation impedance. The general conclusion of the paper is that, in the absence of precise knowledge of initial conditions on the area function, any given potential function will map to a multiplicity of area functions of identical relative resonance characteristics. Since the potential function maps uniquely to the acoustical output, it is suggested that the one-dimensional wave physics is both most accurately and most compactly described within the Klein-Gordon framework.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号