首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relations between transport coefficients and their density and temperature dependence
Authors:Eu Byung Chan
Institution:Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada.
Abstract:Nonequilibrium statistical mechanics via density fluctuation theory predicts relations between the bulk and shear viscosity, thermal conductivity, and self-diffusion coefficient of a fluid. In this Feature Article, we discuss such relations holding for fluids over wide ranges of density and temperature experimentally studied in the laboratory. It is discussed how such relations can be used to successfully compute the density and temperature dependence on the basis of intermolecular interaction potential models with the help of the modified free volume theory and the generic van der Waals equation of state once the parameters in them are determined at a low density or at a subcritical temperature. Although some approximations have been made to derive them, they represent a reliable molecular theory of transport coefficients over the entire density and temperature ranges of fluids--namely, gases and liquids--a theory hitherto unavailable in the kinetic theory of liquids and dense gases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号