首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computing eigenspaces with specified eigenvalues of a regular matrix pair (A,B) and condition estimation: theory,algorithms and software
Authors:Bo Kågström  Peter Poromaa
Institution:(1) Department of Computing Science, Umeå University, S-901 87 Umeå, Sweden
Abstract:Theory, algorithms and LAPACK-style software for computing a pair of deflating subspaces with specified eigenvalues of a regular matrix pair (A, B) and error bounds for computed quantities (eigenvalues and eigenspaces) are presented. Thereordering of specified eigenvalues is performed with a direct orthogonal transformation method with guaranteed numerical stability. Each swap of two adjacent diagonal blocks in the real generalized Schur form, where at least one of them corresponds to a complex conjugate pair of eigenvalues, involves solving a generalized Sylvester equation and the construction of two orthogonal transformation matrices from certain eigenspaces associated with the diagonal blocks. The swapping of two 1×1 blocks is performed using orthogonal (unitary) Givens rotations. Theerror bounds are based on estimates of condition numbers for eigenvalues and eigenspaces. The software computes reciprocal values of a condition number for an individual eigenvalue (or a cluster of eigenvalues), a condition number for an eigenvector (or eigenspace), and spectral projectors onto a selected cluster. By computing reciprocal values we avoid overflow. Changes in eigenvectors and eigenspaces are measured by their change in angle. The condition numbers yield bothasymptotic andglobal error bounds. The asymptotic bounds are only accurate for small perturbations (E, F) of (A, B), while the global bounds work for all Verbar(E, F.)Verbar up to a certain bound, whose size is determined by the conditioning of the problem. It is also shown how these upper bounds can be estimated. Fortran 77software that implements our algorithms for reordering eigenvalues, computing (left and right) deflating subspaces with specified eigenvalues and condition number estimation are presented. Computational experiments that illustrate the accuracy, efficiency and reliability of our software are also described.
Keywords:Regular matrix pair (pencil)  generalized Schur form  direct reordering of eigenvalues  generalized Sylvester equation  eigenvectors  deflating subspaces  condition estimation  error bounds  blocked algorithms  LAPACK
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号